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Reversible and irreversible (transport) phenomena in fluid-solid mixtures were analysed by the 
method of rational thermodynamics (nonlinear continuum mechanics). After formulating the 
balances and the second law of thermodynamics, constitutive equations for the binary mixture 
were proposed involving diffusion, heat conduction, and long-term memory characterized by an 
internal parameter. Viscosity and chemical reactions were disregarded. The final form of the 
constitutive equations is based on the constitutive principles of determinism, local action, memory, 
equipresence, objectivity, and on the entropic principle of Coleman and Noll. The cases of an iso­
tropic solid and a mixture offluids are also discussed. 

The present work deals with a phenomenological (i.e. not molecular) description 
of reversible and irreversible (e.g. transport) phenomena in mixtures of a fluid and 
a substance of any symmetry (usually solid) using the method of nonlinear continuum 
mechanics, called also rational thermodynamics 1 - 4. The results are intended for the 
phenomenological description of gas diffusion in polymersS ,6, since certain pheno­
mena (e.g. nonfickian diffusion) are difficult to describe in terms of older theories. 
Although the results are valid for the nonlinear case, they can be simplified (e.g. 
by linearization) and used in further works. The procedure will be similar to the 
monograph2 , where the underlying ideas, principles, and postulates are discussed 
(compare1 •3 •4): rational thermodynamics (nonlinear thermomechanics) will be 
applied to a nonreacting two-component mixture of a fluid and a substance of arbitr­
ary symmetry (e.g. as a model of gas penetrating through a polymers.6 , usuaIly 
a solid, which may have anisotropic properties). The viscosity effects will be neglected 
as well as chemical reactions between gas and polymer. On the other hand, a long­
-term memory describing physical or chemical changes in the polymer will be taken 
into account by using internal ("hidden") parameters. 

Basic Concepts and Kinematics 

We shaIl use the direct notation of vectors and tensors (denoted respectively by small 
and capital bold face letters) with the usual notation of the common operations l - 4 

in addition to the notation of the components in cartesian coordinates using the 
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summation rule. The components will be distinguished by latin superscripts: capital 
in the case of reference (Lagrangian) and small in the case of spatial (Euler) coordina­
tes necessary for the description of deformations l - 4 • The spatial and reference gra­
dients of a quantity", will be denoted respectively as grad", and Grad",. For example, 
when F (in component form FI1) is the deformation gradient l - 4 , then the second 
deformation gradient is G == Grad F (in component form GIlK; the last superscript 
refers to the component of the gradient). Or, for vector 0 

where F- 1 is inverse to F. 

grad 0 = (Grad 0) r 1 , 

(grad o)IJ = (Grad 0)1J F-llJ , (1) 

The mixture components are referred to by subscripts IX = g, s, of which g refers 
to the fluid (liquid or gas) and s to a substance of arbitrary symmetry (preferably 
solid polymer); the summation over both components will be denoted as 'L. In some 
cases the subscripts may be omitted without loss in clarity, e.g. the deformation 
gradients refer only to the solid, the subscript s being superfluous. 

We introduce the diffusion velocity u defined as 

(2) 

i.e. the difference between the component velocities VII and Vs. The material derivative 
with respect to component IX, e.g. for tensor A is defined as 

D"A aA -- = - + (grad A) v" , 
Dt at 

(3) 

where the derivative with respect to time t is taken at constant position in the space 
coordinates. We can write shortly 

and in the component form 

D AJK 
-g- = AJK + ul(grad A)lKI. 

Dt 

The spatial velocity gradient L" is according to Eq. (1) 

D F _ 
L" == grad v" = ~F" 1 

Dt 
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and can be decomposed into a symmetrical tensor of the deformation rate, 0, .. 
and an anti symmetrical tensor spin, W", 

L", = 0", + W~. (7) 

General Postulates 

We shall consider the conservation laws and the second law of thermodynamics 
in a local form for chemically nonreacting mixtures (ref. 2 ,part III). The mass balance 
for component IX reads 

D",(l", + n div v = 0 
Dt "lit ~ , (8) 

where (lilt is the density of component IX ("weight concentration") which is always 
positive. Eq. (8) can be integrated to give for the solid (ref. 2 , Eq. (27.12» 

Qs\det FI = Q~ , (9) 

where Q~ is the prescribed density of component s in reference configuration. The 
summation of Eq. (8) over both components gives the mass balance of the mixture. 

The momentum balance for component oc reads 

D",v", d· T b k 
(lilt _.- = IV ,,+ QIIt '" + '" 

Dt 
(10) 

where Tilt denotes partial stress tensor, b" external volume force, e.g. gravity (if the 
reference system is not inertial, then the corresponding force, e.g. centrifugal, is 
involved), and k", denotes interaction volume force (acting on component IX from the 
other). The momentum balance for the mixture reads 

~)" = o. (11) 

Hence, only k == ks will be used in the text below. The balance of the moment of mo­
mentum for component IX (assumed to be mechanically nonpolar) has the form 

Tilt = T~, (12) 

where the superscript T denotes transposition. The corresponding equation for the 
mixture is obtained again by summation. 
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Since both components have the same temperature, we need the energy balance 
only for the mixture (ref.2, section 31): 

(13) 

Here, u~ is the (specific) internal energy of component IX, q the heat flux, Q the heat 
source (due to external radiation), tr denotes trace, and div divergence in spatial 
coordinates. 

The second law of thermodynamics can be written in the form of the Clausius­
-Duhem inequalityZ-4 

u == ~)<x D~:<x + divq!T- Q!T~ 0, (14) 

where s~ is the (specific) entropy of component IX, T is the absolute temperature, 
which is positive, and u entropy production. By combining Eqs (13) and (14) we 
obtain the so-called reduced inequality 

" DJ<x " D<xT -1 "T 0 k - Tu = L./.!~ -- + L/1<xS<x -- + T q. g - L..tr <X <X + . u ~ ° , 
Dt Dt 

(15) 

where g == grad Tand the specific free energy, i<x' of component ex is defined as 

(16) 

Constitutive Equations 

The general postulates are insufficient for the solution of a given problem; they must 
be supplemented with equations describing the studied material model, i.e. constitutive 
equations. These are based on the so-called constitutive principles l - 4. According 
to the principle of determinism, the independent variables of the constitutive equations 
are determined by the field of motion of the components and by the temperature 
field; according to the principles of local action and differential memory the consti­
tutive equations represent functions in the space and time derivatives of these fields; 
and according to the principle of equipresence all dependent variables are functions 
of the same independent variables. For a nonreacting two-component mixture with 
constant temperature, we propose the constitutive equations for the dependent 
variables (which follow from the general postulates) in the form 

U<x' S<x' T,(sym.), k, q, P} = ff(Qg, F, h, G, U, T, g, [3) (17) 
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which summarizes nine constitutive equations for the quantities on the left-hand side, 
i.e. !F represents in turn the functions la' Sa' t a, k, q, and 1 (see Eq. (18) below) of the 
independent variables on the right-hand side. Of these, F, G, {lg and h == grad {lg 
characterize deformations; for the fluid, the deformation can be expressed by the 
density l-3,9. The quantities G and h have to be used with mixtures to describe 
interactions between the components (the simpler case, so-called mixtures of simple 
materials, will be discussed in the next section)2-4. A short-term memory related to 
motion is given by the dependence on the velocities va through the diffusion rate u 

(as a result of the principle of objectivity, discussed below); the effect of viscosity 
is ignored (the quantities in Eq. (7) are absent in Eq. (17». The temperature field 
has an effect only through the temperature T and its gradient g, the temperature 
memory being ignored. The long-term memory is characterized by the scalar internal 
parameter p by using the constitutive equation for its time derivative 7 

(J = l({lg, F, h, G, u, T, g, P) . (18) 

For simplicity, only one internal parameter is considered, however the following 
equations may easily be generalized for more such parameters. 

The constitutive equations (17) involve implicitly the constitutive objectivity 
principle! -4, i.e. independence of the constitutive equations or the material model 
on the reference frame, since the velocities of the components are involved only 
in the relative velocity u. In addition, the principle of objectivity implies that the 
constitutive functions !F are isotropic, i.e. 

{fa' Sa' QTa QT, Qk, Qq, (J} = !F({lg, QF, Qh, QG, Qu, T, Qg, P) (19) 

for all orthogonal tensors Q, i.e. for arbitrary rotation and inversion. 
In order to use the most important constitutive principle, the entropy principle 

of Coleman and Nolls, we apply the derivative (4) to the constitutive functions la: 

i = al~ (WijFJJ + DiJFJJ) _ ala. ((2 Dii + u1hl) + ala. t + ala.JJj + ala. (J + 
a. aF'J S S a(2g g g aT agJ ap 

+ ala.. uj + _ ala. ciJJK _ ala.. [u j (grad h)1J + (hjbki + hi<5Jk) DJk _ hjWji _ 

auJ aGJJK ah1 g g 

- (lg(grad tr D)I] . (20) 

Here, use was made of Eqs (5) - (8) (b ik denotes Kronecker's delta). This result is 
substituted for DJa.JDt into the reduced inequality (15), where DJgJDt is expressed 
by using Eq. (5) and grad Ig by means of the constitutive function 19 (as Eq. (20» and 
Eq. (1). Similarly in Eq. (15) DgTJDt is modified by using Eq. (5). Further we use 
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the definitions of the density of the mixture e, its free energy f, and entropy s 

e == Le~, ef == lilJa. , (21), (22) 

(23) 

where f and s are functions J and § of the independent variables in Eq. (17), since es 

according to Eq. (9) depends on F. Finally, we obtain the inequality 

- TO' = e -- + s T + e -. uJ + e -. gJ - e -. e grad tr 0 J + ( aJ ). aJ. aJ. aJ ( ). 
aT auJ agJ ahJ g 

+ e iJ! GiJK + e aJ~ ui (grad g)ii + (e aJg. ui - e a! ui ) (grad h)Ji + 
uG!JK gag! g ahl ah' 

+ e~!g -F-1LIU i (Grad G)JJKL + e aJg u i (grad P)i -
g £7GJJK g ap 

- [Tii + c5ij "e e aJa. - e aJg: ui + e aJ (hic5 ik + hkc5ji)] Dii -
g L.. a. g aeg g au' ahk g 

- T'l - e ~- P + e ~ ul D'l + e 2~ uJ + e _:1_. hl W. -[ .. L iJl"J £72"J" [a2'. a2"J Ij 

s a. aFd g au' s g au' ah' g 

We now apply the constitutive entropic principle to this inequalityl-4,8: the second 
law (14) and hence also inequality (24) must be valid for any motion and temperature 
fields in the material, hence for any values of the independent variables eg, F, h, 
G, U, T, g, and parameter p obtained by solving Eq. (18) (we assume the existence 
of the solution at any initial values of this parameter 7) and further for arbitrary 
values of the mutually independent quantities 

t, Ii, g., grad tr 0 

grad g, grad h, Og, OS 

G, Grad G 

grad p. 
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These quantities are involved in the expression (24) in the linear form, which however 
must be cancelled (in the opposite case it would be possible to find such values 
of (25)-(29) which would make the inequality (24) invalid). To cancel the terms 
involving the quantities (25), we must set 

iJf af 
2=0 --"-=0 iJu - , Dg - , 

('j 
-- == 0, 
Dh 

(30) 

-s. (31) 

This leads to simplification. Further, since the terms (26) are antisymmetrical, 
their multipliers in the expression (25) must be symmetrical 

(32) 

(for rx = s, use was made of the first of Eqs (30» and also 

(33) 

For analogous reason, to cancel the quantities containing (27), we must set 

(34) 

Here, the derivatives, which generally are functions of u continuous at the point 
U = 0, must be identically equal to zero (this can be shown by setting i = j). Thus, 
the first two terms of (27) give 

alg == 0, alg == 0 . 
ag ah 

(35) 

Similar considerations for the last two terms of (27) using Eqs (30) (third one), 
(32), (33), and (12) give 

.. L aJ.'j aJ.. TIJ = - n n _II <5 1 + n _I uJ 
1 "''''''1 a "II ai' {ll u 

(36) 

Tij = "(1 al~ FjJ - (} ~ ui • 
s L... ,. aF'J 1 au' 

(37) 
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The first of the terms (28) is a tensor of the third order, symmetrical in the last two 
indices, hence its multiplier in (24) must be a similar antisymmetrical tensor. This is, 
however, symmetrical in these indices (derivatives with respect to symmetrical quanti­
ties preserve the symmetry, ref. 2 , appendix C), hence identically 

(38) 

The second one of the terms (28) is a tensor of the fourth order, symmetrical in the 
last three indices (ref. 2 , (A 67)). A tensor of the third order, symmetrical in the last 
two indices and defined as (for u =1= 0) 

(39) 

may b;'! arbitrary since Grad G is arbitrary and the vector F-1LiUi is different from 
zero (det F =1= 0). Further procedure is the same as in deriving Eq. (38), only Eq. (39) 
is substituted for G. Hence, 

(40) 

Here, the validity of Eq. (39) is generalized for the case u = 0 assuming continuity 
of the derivative at this point. 

At last, the multiplier of the term (29) in the expression (24) must also be equal 
to zero. This can be chosen independently of the value of p, since the initial value 
for the solution of the differential equations (18) can be chosen independently for 
different particles and the zero of the time scale is arbitrary. For the inequality (24) 
to hold good with any values of grad p, we must set 

alg == 0 
up (41) 

including the point u = 0, where the derivative is again assumed to be continuous. 
According to Eqs (30) and (38) 

i = l(lll' F, T, P) . (42) 

The entropy s depends on the same variables, as can be seen from Eq. (31). According 
to Eqs (35), (40), and (41) we have 

i g = lillg, F, u, T) , 

is = ls(llg, F, u, T, P) . 
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The last equation follows from Eqs (42), (43), and (22) (see text below Eq. (22». 
Such simplification does not, in general, apply for the partial entropy Sa' and we must 
observe Eq. (17) instead. 

The inequality (24) is, after all, reduced to 

(45) 

where n = n({}g, F, h, G, u, T, g, /3). 
It can be seen from the constitutive equations for our model that the specific free 

energies are given by Eqs (42) - (44); the specific entropy s is given analogously 
(through Eq. (31). The stress tensors Ta. are given by Eqs (36) and (37); generally, 
Tg is in the case of diffusion (u =l= 0) not reduced to the pressure. Other constitutive 
equations remain in the form (17) (including sa); the entropy production is given 
by Eq. (45). Up to this point, we did not use the constitutive principle of symmetry 
(ref. 2 , section 19) related to the eventual symmetry of the material (e.g. isotropy), 
which will be discussed in the last section. 

Considering zero production of entropy, we define the equilibrium by the condi­
tions 

U=o, g=o (46) 

and by the value of the internal parameter 

(47) 

at which fl is equal to zero 

fl = l({}g, F, h, G, 0, T, 0, r) = o. (48) 

Then, the quantity n defined by Eq. (45) is not only zero but also minimum, i.e. 

dn ({}g, F, h, G, AU, T, Ag, r + AV) = 0 
dA 

for the real parameter...1. equal to zero (v is a constant scalar). 
This in turn implies that in the equilibrium state we have 

(49) 

(50) 
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(51) 

(DJ)+ = O. 
DP 

(52) 

Here, the cross refers to equilibrium values, i.e. values obtained by introducing the 
conditions (46) and (47) into the corresponding constitutive equations, e.g. q+ = 

= q(Og, F, h, G, 0, T, 0, r) or (oj/oPt = (oJ/ap) (Og, F, T, r). Eqs (50)-(52) fol­
low by substituting Eq. (45) into (49), observing the arbitrariness in the values of u, g, 
and v, and assuming (al/aPt =1= O. 

Thus, in the equilibrium (46) and (47) the heat flux (50) and the "affinity" (52) 
are equal to zero and k is given by Eq. (51). Another restriction of the constitutive 
equations follows from the second derivatives of II (conditions for the minimum, 
expressed by inequalities). 

Simplified Material Models 

By omitting some independent variabJes in the constitutive equations, simplified 
material models can be obtained. It is not sufficient, however, only to reduce the 
resulting equations in the preceding section. Further reduction is carried out by ap­
plying anew the entropic principle to the inequality (45). For example, with a mixture 
of simple materials, the independent variables hand G are omitted from the constitu­
tive equations (17). The relation (45) is then linear in these quantities and the entropy 
principle leads to 

(53) 

(we assume continuity of the derivatives at U = 0 as in the derivation of Eq. (35)). 
The free energies of the components hence depend only on their own density and 
deformation gradient, which is a characteristic property of all simple materials 2 -4. 

In the equilibrium state defined by Eqs (46)-(48) we have k+ = 0 in addition to the 
conditions (50) and (52). Such a mixture consists of components the interactions 
of which are negligible. 

We now shall consider a mixture of nonsimple materials without internal para­
meters, i.e. without a long-term memory: the parameter P is cancelled from the consti­
tutive equations (17), (42), and (44) as well as the last term in the relation (45). The 
internal parameters of the material decrease rapidly with the time, the values of P = 

= rand !1 = 0 being constant. 

The next section deals with a simplification of the general model. 
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Linear Model 

The general equations can be simplified by assuming that 

1) the constitutive equations are linear with respect to 

u,g,h,G 

Samohyl, Nguyen, Sipek: 

(54) 

2) the constitutive equation for P (18) is independent of the quantities (54) and has 
the form 

(55) 

We start with the assumption that the constitutive equations (17), (42)-(44) 
are linear with respect to the diffusion velocity u. This is of advantage in studying 
the diffusion, since both u and the diffusion flux can be expressed explicitly from the 
constitutive equations. However, if the specific free energies (43) and (44) are forced 
to be linear functions of u, they cannot depend on u at all, as can be seen from Eq. (32), 
hence 

Ig = lieg, F, T), Is = I.{eg, F, T, {3) . (56), (57) 

Equations (36) and (37) are then reduced to 

(58), (59) 

i.e. the tensor Tg is reduced to partial pressure, Pg = Pg{eg, F, T, {3) and 

(60) 

The quantity I satisfies Eq. (42) (analogously for s according to Eq. (31». If we con­
sider the linearity with respect to all the variables (54), other constitutive equations 
will have the quite general form 

(61) 

where the coefficients So .. , s! .. (r = 1,2,3), and S¥: are functions of eg, F, T, and p. 
Because of the symmetry of the term GilK, the term S¥a,K is symmetrical in the indices 
J and K. The constitutive equation for Ua" according to Eqs (16), (56), (57), and (61), 
would have a similar form; and the same applies to the constitutive equation for the 
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general case (18) (since the equations for such a general, even if linearized case are 
very complicated, use was made of the simplifying assumption (55». Finally, consti­
tutive equations for the vectors k and q linearized with respect to the quantities 
(54) will have the quite general form 

(62) 

(63) 

Where all the coefficients k i Kij KijJK qi Qij and QijJK (r = 1 2 3) are functions 0' r' 4 , 0' r' 4 , , 

of e g, F, T, and p, and the coefficients K~JK, Q~JK are symmetrical in J, K (because 
of the same symmetry of GiJK). The negative signs in Eqs (62) and (63) were chosen 
in order to obtain positive values of the most common transport coefficients (ref. 5 ; 

compare discussion of the equilibrium in the next section). 

Constitutive Equations for the Linear Model 

As with every simplified model, further restrictions can be obtained by applying 
once more the entropic principle to the inequality (45), into which the simplified 
constitutive equations (56), (57), (61)-(63) were introduced. Thus, 

- T- 1 Q~gjgl + eAghjuigl + egS~~GjJKulgl + 

+ egs{gujuigl + eAggjglui ~ 0 . (64) 

Now, we use again the entropic principle of Coleman and Nont-'4.8: The first term 
and other coefficients combined with the quantities (54) are functions only of eg, F, T, 
and p; if these variables are chosen constant, the quantities (54) become constants, 
although arbitrary. Thus, considering the terms of the second order linear with 
respect to hand G we obtain the identitities 

(65). (66) 
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QIJJK = 0 KIJJK __ ! e (oJ. F- 1Ki + aJg F- Ul ). 
4 - , 4 - 2 g aFJJ aFJK (67), (68) 

The last two equations follow from the antisymmetry of the coefficients standing 
before (;JJKgl and c;JJKU i (since G is symmetrical in J, K) and from the symmetry 
of Q~JK and K~JK. We assumed g = 0 in the derivation of Eqs (66) and (68), and 
U = 0 in the derivation of (65) and (67) to eliminate the terms of the third order, 
which are also linear with respect to hand G. This linearity can be used together 
with Eq s (65) - (68) to show that 

S jJK = 0 
4g - • (69) 

(Note that Sr,.K is symmetrical in J and K). With the remaining terms of the third 
order, it is important that for sufficiently large values of the components of u and g 
these terms determine the sign of the inequality (64). For example, if we set u = g = 
= (a, 0, 0), where a is an arbitrarily large (positive or negative) number, then s~. + 
+ S~g = O. If we set u = (a, 0, 0), g = (a, a, 0), we obtain s~. + s~. + S~g = 0, 
and therefore (proceeding analogously in remaining cases) 

SI - 0 i - 0 II = , S2g = . (70) 

It follows from Eqs (31), (42), (23), and (9) that the identities (69) and (70) apply 
not only to the component g but also to the other, s. Hence, 

S,. = 8,.(eg , F, T, P) ':x = S, g . (71) 

The constitutive equations (62) and (63) then take the form 

Here, use was made of Eqs (65)-(68) and the symmetry of G; the coefficients 
. . . j Ij . J •. 

k~, q~,K~, K 2 , Ql, and Qi depend on eg • F, T, and p. 
The inequality (64) is reduced to 
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-T(1' = eO} 6+ki u l + T- 1q lgi + [e (a}g + S )15 IJ_ ap P 0 0 g aT Og 

- K~I - T- 1 Q~ ] giuJ - K~uluj - T- 1 Q~jgJgl ~ 0 . (74) 

The coefficients k~ and q~ are generally different from zero owing to the first term 
being different from zero (although they are restricted by the inequality (74)). However, 
in the important case where P = P+ such that 

(75) 

it follows from the inequality (74) that 

k~ = k~(eg, F, T, p+) = 0, q~ = 4~(eg, F, T, p+) = O. (76) 

The value of P+ defined by Eq. (75) is the equilibrium value of the internal para­
meter. The equilibrium in the present simple model is defined as earlier by the condi­
tions (46), (47), and (75). This is again based on zero entropy production, (1' = 0 
in the relation (74). The result (76) is with respect to Eqs (72) and (73) consistent 
with Eqs (50) and (51) (with respect to Eq. (43), the last derivative may be written 
without cross +). 

The sufficient condition of equilibrium (minimum of the entropy production) 
implies certain inequalities for the coefficients in the relation (74), e.g. positive 
semidefiniteness of the tensors Kij and Q~ (for P = p+; this is related to the choice 
of the signs in Eqs (62) and (63), which will be useful in applications5). 

According to the objectivity principle, also the constitutive equations of the linear 
model must be isotropic functions (19). The constitutive equations for the scalars 
.f., /, Sa' S, and p are according to Eqs (31), (42), (55)-(57), and (71) isotropic func­
tions of the single "vector" F iJ and scalars eg, T, P (since any change of the reference 
system is related only to the space coordinate i; e. in the functions f and s depends 
on F through Eq. (9), hence according to the representation theorem for scalar 
isotropic functions (ref. 2 , appendix D, and ref.4), they depend on F through the "sca­
lar" product, in our case the right Cauchy-Green tensor C = fTF. For example, 

(77) 

In the case of Q., passing from F to C is possible thanks to the relation Idet FI = 
= . ./(det C). 
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The constitutive equations for the vectors k and q, (72) and (73), are vectorial 
isotropic functions of u, g, h, F, and G (the latter two behave as vectors). According 
to their representation theorem (refs2 ,ll, Eq. (D 58», their form is preserved if func­
tions of the type (77) are used in the derivatives (e.g. alg/aFil = 2(ajg/aCJK) FiK) 
and the coefficients have the most general form 

(78) 

where k~o, K~~, and kr (r = 1, 2) are functions of Qg' C, T, and p. Analogous equa­
tions apply for q~ and Q~j. 

Isotropic Solid and Fluid 

In the above considerations, we did not assume any internal symmetry of the solid s, 
which could serve us to simplify the constitutive equations. Such a symmetry can be 
characterized by a symmetry group involving undistinguishable deformations, i.e. 
those which do not change the response of the constitutive equations2 ,3. 

Consider the most simple case, where the substance s is a nonsimple isotropic 
material (solid; even fluid may be similar as will be shown below), and a reference 
configuration exists, which is called undistorted, such that all rotations and inver­
sions are undistinguishable in it9 ,lo (compare section 23 in ref. 2). As follows from the 
application of the symmetry group of an isotropic nonsimple material, in the cor­
responding constitutive equations the dependence on F or G can be replaced by the 
dependence on 8 or grad 8, where 8 is the left Cauchy-Green tensor2 ,9,lO defined 
as 8 == FfT. For example, we obtain from Eqs (56), (57), (72), and (73) 

Here, k~, K!J, q~, and Q~J (r = 1,2) are the same coefficients as in Eqs (72) and (73), 
but now they are functions of Qg' 8, T, and p. In the derivation of Eq. (80) (last 
term), use was made of the last term in Eq. (72), Eq. (79) (first one) and the identity 
(ref.2 , Eqs (6.61) and (6.65» 

GUKF-1JJF-lKk = ![(grad 8)I1kB- 1Ij + (grad 8)IlJB- IIk _ 

_ BmlB-IJDB-lkI(grad 8tIrn] . (82) 
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The above constitutive equations must satisfy again the objectivity principle as 
expressed by Eq. (19). For example, on applying Eq. (19) to Eqs (80) and (81) and 
rearranging to the form of (80) and (81) we find that the vectors k~ and q~ and the 
tensors K~i and Q~i (r = J, 2) are isotropic functions of the variables l!g' 8, T, and p. 
Hence, e.g. 

(83) 

for any orthogonal Q, and similarly for q~(l!g, 8, T, P). However, according to the 
representation theorem for isotropic vectorial functions ll (ref. 2 , Eqs (D 58, 59», 
we have for isotropic materials 

k~ == 0, q~ == 0, (84) 

since ko and qo are independent of vector variables. Further, 

(85) 

for r = 1,2 (and analogously for Q~i), whence according to the theorems concerning 
representation of isotropic tensor functions ll (ref.2, appendix D) we obtain certain 
restrictions of the dependence of these coefficients on 8 (through representations 
of symmetrical and antisymmetrical parts of K" Qr). 

It can be seen from Eq. (85) that for an isotropic material the tensors K!i and Q!j 
are reduced to scalars (in the form Kr = kr1) only in special cases, e.g. for 8 = (x.21, 
i.e. in the reference configuration (oc = 1) or in volume expansion or compression 
(IX > 1 or IX < 1). This follows from the representation theorem for isotropic tensors, 
which result from Eq. (85) if 8 is chosen as indicated (e.g. ref.2, Eq. (D 18». Namely, 
an isotropic material remains isotropic during the mentioned "isotropic" deforma­
tions starting from the undistorted reference configuration (which is isotropic ac­
cording to its definition), but not during general deformations. (However, this is 
not the case with more general materials, e.g. K;i is not reduced to a scalar even 
in a reference configuration where F = 1, as can be seen from Eq. (78).) The coef­
ficients Kr and Qr are also reduced to scalars in the case of small (infinitesimal) 
deformations (ref. I , chapter IX; ref.2, section 6), when 8 = 1 + 2£ and £ is the 
symmetrical part of a small deviation of F from ,. Indeed, terms of the first order 
involving £ could be involved only in ko and qo, which are however equal to zero 
according to Eqs (84); Kr and Qr are in this approximation independent of £, so that 
we obtain the preceding case oc = 1 and, accordingly, these tensor coefficients are 
reduced to scalars. 

For completeness, we shall discuss the case where the material s is also fluid. 
Its symmetry group is then larger than with isotropic materials and enables us to re-
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place the first and second deformation gradient, F and G, (with isotropic materials 8 
and grad 8) by the density es or its gradient hs == grad e .. respectively2.9. This was 
actually done in the preceding sections in the case of the fluid component g. The 
maximum symmetry group involves the group of the isotropic material, hence use 
can be made of the results for the isotropic material. Thus, instead of Eqs (79) 
we have 

(86) 

similarly f = l(eg, e .. T, P) (Eq. (42), and, consequently, elioT = -s (Eq. (31). 
The stress tensor, Eq. (60), is reduced to the partial pressure Ps 

(87) 

and alI coefficients in Eqs (80) and (81) depend only on the scalars eg, e .. T, and P; 
the last term in Eq. (80) is changed to -eg(alg/aes) h!. This follows from the last 
term in Eq. (72), where the derivative will now be equal to -(alg/aes) esF-'1JJ (since 
f, now depends on F through es according to Eq. (9»; use is made of Eqs (6.61) 
and (40.13) of ref.2. The objectivity principle implies that all coefficients in Eqs 
(80) and (81) are isotropic tensors, since they depend only on scalars (compare 
Eqs (83) and (85), where 8 is replaced by the scalar es), hence Eqs (84) hold good 
(compare Eqs (016) and (0 18) of ref.2), and other coefficients, which are tensors 
of the second order, are reduced to scalars. Thus, Eqs. (80) and (81) for the case 
where the component s is liquid take the form 

(88) 

(89) 

where the scalars kh k2, q 1, and q2 are functions of eg , e .. T, and p. 
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